只要你跑的够快,锅就追不上你

0%

「Codechef SEAARC」Sereja And Arcs(数据分治)

题目描述

「Codechef SEAARC」Sereja and Arcs

数轴上有 $n$ 个点,坐标为 $1, 2, \cdots n$。每个点有个颜色,颜色相同的点两两之间会连一条与经过数轴上方的半圆形圆弧,颜色和端点一样。问共有多少对不同色圆弧相交,答案对大素数取模。

数据范围:$n \le 10^5$。

思路分析

考虑设定阀值 $b$,对于出现次数不超过 $b$ 的颜色,我们暴力地把每条圆弧拿出来,用树状数组来计算有多少对相交;对于剩下的颜色,我们 $O(n)$ 地计算它与剩下所有颜色圆弧的交点个数(这部分可以 dp,具体见代码)。这样总共的复杂度为 $O(nb \log {nb} + \frac{n^2}{b})$,取 $b = 100$ 即可通过。

代码实现

1
#include <bits/stdc++.h>
2
using namespace std;
3
4
namespace __main__ {
5
	typedef long long ll;
6
	const int maxn = 1e5, b = 100, mod = 1e9 + 7;
7
	int n, a[maxn + 3], prev[maxn + 3], last[maxn + 3];
8
	int cnt[maxn + 3], bit[maxn + 3], type[maxn + 3], m, temp[maxn + 3];
9
	int cur[maxn + 3], f[maxn + 3], g[maxn + 3], h[maxn + 3], id[maxn + 3];
10
11
	void add(int x, int y) {
12
		for (int i = x; i; i ^= i & -i) {
13
			bit[i] += y;
14
		}
15
	}
16
17
	int sum(int x) {
18
		int y = 0;
19
		for (int i = x; i <= n; i += i & -i) {
20
			y += bit[i];
21
		}
22
		return y;
23
	}
24
25
	ll solve() {
26
		ll ans = 0;
27
		for (int i = 1; i <= n; i++) {
28
			if (type[a[i]] == 0) {
29
				for (int j = prev[i]; j; j = prev[j]) {
30
					add(i, 1), add(j - 1, -1);
31
				}
32
				for (int j = prev[i]; j; j = prev[j]) {
33
					ans += sum(j);
34
				}
35
			}
36
		}
37
		memset(bit, 0, sizeof(bit));
38
		for (int i = 1; i <= maxn; i++) {
39
			if (type[i] == 0 && last[i]) {
40
				m = 0;
41
				for (int j = last[i]; j; j = prev[j]) {
42
					temp[++m] = j;
43
				}
44
				reverse(temp + 1, temp + m + 1);
45
				for (int j = 1; j <= m; j++) {
46
					for (int k = prev[temp[j]]; k; k = prev[k]) {
47
						add(temp[j], 1), add(k - 1, -1);
48
					}
49
					for (int k = prev[temp[j]]; k; k = prev[k]) {
50
						ans -= sum(k);
51
					}
52
				}
53
				for (int j = 1; j <= m; j++) {
54
					for (int k = prev[temp[j]]; k; k = prev[k]) {
55
						add(temp[j], -1), add(k - 1, 1);
56
					}
57
				}
58
			}
59
		}
60
		return ans;
61
	}
62
63
	inline int func(int x) {
64
		return x < mod ? x : x - mod;
65
	}
66
67
	int calc(int x) {
68
		int ans = 0, cnt = 0;
69
		for (int i = 1; i <= n; i++) {
70
			if (a[i] == x) {
71
				cnt++;
72
			} else if (cur[a[i]] == 0) {
73
				id[i] = cnt;
74
			}
75
		}
76
		for (int i = 1; i <= n; i++) {
77
			if (cur[a[i]] == 0) {
78
				if (!prev[i]) {
79
					f[i] = 1, g[i] = h[i] = 0;
80
				} else {
81
					int d = id[i] - id[prev[i]], p = prev[i];
82
					f[i] = f[p] + 1;
83
					g[i] = (g[p] + 1ll * f[p] * d) % mod;
84
					h[i] = (h[p] + 2ll * g[p] * d + 1ll * f[p] * d % mod * d) % mod;
85
					ans = (ans + 1ll * g[i] * cnt) % mod;
86
					ans = func(ans - h[i] + mod);
87
				} 
88
			}
89
		}
90
		return ans;
91
	}
92
93
	void main() {
94
		scanf("%d", &n);
95
		for (int i = 1; i <= n; i++) {
96
			scanf("%d", &a[i]), cnt[a[i]]++;
97
			prev[i] = last[a[i]], last[a[i]] = i;
98
		}
99
		for (int i = 1; i <= maxn; i++) {
100
			type[i] = cnt[i] >= b;
101
		}
102
		int ans = solve() % mod;
103
		memcpy(cur, type, sizeof(cur));
104
		for (int i = 1; i <= maxn; i++) {
105
			if (type[i] == 1) {
106
				ans = func(ans + calc(i));
107
				cur[i] = 0;
108
			}
109
		}
110
		printf("%d\n", ans);
111
	}
112
}
113
114
int main() {
115
	__main__::main();
116
	return 0;
117
}